Streamlining Photonic Integrated Circuit Development

September 15, 2015
Your Hosts

Stephen Hardy
Editorial Director & Associate Publisher
LIGHTWAVE

Erik Pennings
General Manager and Principal
7Pennies Consulting
Today’s Speakers

Twan Korhorst
CEO
PhoeniX Software

Amit Khanna
Research Engineer
IMEC
Streamlining Photonic Integrated Circuit Development

LightWave Webinar

Sep. 15, 2015
Sponsoring PIC Service Providers

- Foundries
- Silicon Photonics
- TriPleX
- Design software
- Packaging
- Turn key design houses
- Organizer
Agenda for This Presentation

- Why are PICs gaining momentum?
 - 100G coherent and 100G datacom are leading the way
 - But other areas are picking up (sensing, lifesciences, military...)

- Introduction to foundry services
 - Generic processes
 - Pros & cons of MPWs

- Design software
 - Electronic and Photonic Design Automation (EDA & PDA)
 - Specific attention to PDK (process design kit)

- Overview of packaging services

- Benefits of using a turn-key PIC design house
What Is a Photonic IC?

- (de)multiplexers $\times 11$
- PIN $\times 100$

A PIC combines several components within a single chip.

- Benefits are smaller size, lower cost, better manufacturability.
- Some of the cons can be compromises in performance and/or yield.
Why Are PICs Gaining Momentum?

- In the past, most of fiberoptics consisted of a LD, a fiber, and a PD
 - So there simply was little that could be integrated

- WDM did not help because transmit lasers were all on different linecards

- But 100G telecom/datacom have completely changed the situation
 - Now there is plenty optics in a small module & size constraints require integration

- Demand for PICs is now also increasing in sensing, life sciences, military,...
If You Need a PIC, Where Do You Go?

- You need an application specific PIC
 - Fiber to the Home Wireless
 - Medical Bio-imaging
 - Datacom Switching
 - Sensor Readouts

 ● Please note that electronic ICs have paved the road for 50 years

- You need to decide on **material** and **foundry**
 - Options: InP, Silicon, or TriPleX (excluding PLC and LiNbO_3)

- Also need to decide on **MPW vs. a custom run**
 - MPW reduces costs, but custom runs may be needed in the end anyway (for volume and/or for unique performance)
Decide on a Material: InP, Si, TriPleX

Active materials (lasers...) only possible in InP
- SOA
- Fabry-Perot lasers
- Tunable DBR lasers
- Multiwavelength lasers
- Picosecond pulse laser

Switches & modulators possible in InP & Silicon
- Phase modulator
- Amplitude modulator
- WDM crossconnect
- WDM add-drop

Passives possible in InP, Silicon, and TriPlex
- MMI-couplers
- MMI reflectors
- AWG-demux
- Ring filters
- Thermo optic phase modulator

Lightwave PIC Webinar
Comparing MPW offers in InP, Si, TriPleX

<table>
<thead>
<tr>
<th>Broker</th>
<th>Process</th>
<th>Lasers</th>
<th>SOAs</th>
<th>TDBR</th>
<th>Modulators / Phase shifters</th>
<th>Detectors</th>
<th>Prop loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L (mm)</td>
<td></td>
<td>dB/cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vp-Pp (V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Loss (dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B (GHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R (A/W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B (GHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Idark (nA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB/cm/cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JePPIX</td>
<td>Oclaro TxRx 10G</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>1</td>
<td>< 2</td>
<td>> 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JePPIX</td>
<td>HHI TxRx 25G</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>0.5</td>
<td>< 2</td>
<td>< 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(25 mW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JePPIX</td>
<td>SMART TxRx 10G</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>2</td>
<td>< 2</td>
<td>> 3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JePPIX</td>
<td>TriPleX (DS-500-170)</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>1-2</td>
<td>< 2</td>
<td>< 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(500 mW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VTT 3 μm SOI</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>< 0.1</td>
<td>0.1-0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europractice Imec</td>
<td>ISIPP25G+</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>> 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 50</td>
<td>< 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5-2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europractice / LETI</td>
<td>CEA-LETI Si310-</td>
<td></td>
<td></td>
<td></td>
<td>0.04*</td>
<td>2*</td>
<td>5*</td>
</tr>
<tr>
<td></td>
<td>PHMP2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>50*</td>
<td></td>
</tr>
</tbody>
</table>

* Ge EA Modulator

- **TriPleX** & **VTT 3 μm SOI** lowest losses. **TriPleX** suitable for visible light
- For active components with gain, only InP can be used
- E.g. for modulators & detectors, InP and Silicon have comparable performance
- Silicon is key for high integration density, reproducibility, and volume scalability
Material: Key Drivers Behind Silicon

- **Process maturity**
 - CMOS fab-based processing
 - Fidelity-Uniformity-Reproducibility-Scalability
 - Compatibility with 3D process integration
 - Laser integration compatible on 200mm CMOS foundry

- **Extreme integration density**
 - WG width (450 nm), Bend radius (2-3um)
 - 16 channel AWG (300umX300um)

- **High speed modulators**
 - Traveling Wave, Ring modulators, Ge EAM (50G)
 - Small footprint (ring modulators)

- **Photodiodes**
 - ~1A/W responsivity, and very low dark current

- **Automated Testing**
 - In-line process parameter trend-charts
 - Wafer-scale end-of-line functional testing

- **PDK and Library Maturity**
 - Mature and proven design tools and flow
 - Vast number of tested C and O band components
 - Device models for library components

Automated tracking of **132** in-line process parameters (scatterometry, TDSEM, In-lineFIB, ellipsometry etc.)

End-of-line wafer scale testing. Standard test-suite.
> **500** Electrical Test sites, >**150** Opto-electrical test sites

Lot to lot photodiode variations
Deciding on MPW vs. Custom Runs...

- Multi Project Wafer (MPW) shares cost between users

 MOSIS started MPW in Electronics ICs in 1981

 Photonics MPW now by JePPIX, EUROPRACTICE, LioniX, and MOSIS

- Lower cost is ideal for prototyping
- MPW broker provides complete ecosystem
- MPW uses a generic platform

- Custom runs may be beneficial in volume
 - Can run more frequently
 - Can optimize process for better yield or unique performance
MPW vs. Custom: Generic Processes

- MPW users all share the same generic process
 - Imposes limits, but comes with a library of building blocks
 - “Lego” building blocks allow for virtually all chips
 - >350 PICs developed in generic fabs via MPW runs

- There are several key MPW brokers:
 - Europractice-IC for Silicon photonics
 - LioniX for TriPleX material (Si$_3$N$_4$/SiO$_2$)
 - JePPIX for InP: Smart Photonics, Oclaro, and HHI
 - AIM Photonics won the IP-IMI award in US, being formed
 - Each MPW broker brings its own solution ecosystem
List of Brokers for MPW foundries

<table>
<thead>
<tr>
<th>Technology</th>
<th>Broker</th>
<th>Runs/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Photonics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imec PSV</td>
<td>Europractice/MOSIS</td>
<td>2</td>
</tr>
<tr>
<td>Imec ISIPP25G+</td>
<td>Europractice/MOSIS</td>
<td>3</td>
</tr>
<tr>
<td>CEA-LETI Si310-PH</td>
<td>Europractice</td>
<td>1</td>
</tr>
<tr>
<td>CEA-LETI Full Platform SI310-PHMP2M</td>
<td>CEA-LETI</td>
<td>2 (starting 2016)</td>
</tr>
<tr>
<td>IHP PIC</td>
<td>Europractice</td>
<td>1</td>
</tr>
<tr>
<td>VTT</td>
<td>VTT</td>
<td>1</td>
</tr>
<tr>
<td>IME Full platform</td>
<td>IME</td>
<td>3</td>
</tr>
<tr>
<td>Indium Phosphide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMART Photonics</td>
<td>JePPIX</td>
<td>3..4</td>
</tr>
<tr>
<td>Oclaro</td>
<td>JePPIX</td>
<td>1</td>
</tr>
<tr>
<td>Fraunhofer HHI</td>
<td>JePPIX</td>
<td>2</td>
</tr>
<tr>
<td>Silicon Nitride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LioniX</td>
<td>LioniX / JePPIX</td>
<td>3..4</td>
</tr>
</tbody>
</table>
Brokers: Introducing Europractice

- Europractice completed 545 designs using 10 technology nodes in 2014
- Europractice brokers MPW runs for IMEC, LETI, and IHP
Si Photonics MPW Foundries

<table>
<thead>
<tr>
<th>Technology</th>
<th>IHP</th>
<th>Imec</th>
<th>LETI</th>
<th>VTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOI Type</td>
<td>SOI 220nm/2µm BOX</td>
<td>SOI 220nm/2µm BOX</td>
<td>SOI 310nm/800nm BOX</td>
<td>SOI 3µm/3µm BOX</td>
</tr>
<tr>
<td>Access</td>
<td>Europractice</td>
<td>Europractice/MOSIS</td>
<td>Europractice/LETI</td>
<td>VTT</td>
</tr>
<tr>
<td>Passive SOI etching steps</td>
<td>2</td>
<td>3+1poly</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PDK Tools</td>
<td>IPKISS/TexEda/</td>
<td>Mentor Graphics/</td>
<td>Cadence/</td>
<td>PhoeniX Software</td>
</tr>
<tr>
<td></td>
<td>(PhoeniX Software)</td>
<td>Synopsys/IPKISS/</td>
<td>PhoeniX Software/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhoeniX Software</td>
<td>Mentor Graphics</td>
<td></td>
</tr>
<tr>
<td>Min Critical Dimension on Mask</td>
<td>130nm</td>
<td>130nm</td>
<td>120nm*****</td>
<td>600nm</td>
</tr>
<tr>
<td>Minimum Cost Euro/mm²</td>
<td>180**</td>
<td>278** / 1508****</td>
<td>124** / 935***</td>
<td>120** / 250***</td>
</tr>
<tr>
<td>Polarization Dependence</td>
<td>TE only</td>
<td>TE only</td>
<td>TE only</td>
<td>Low</td>
</tr>
<tr>
<td>Packaging</td>
<td>Tyndall Institute</td>
<td>Tyndall Institute</td>
<td>Tyndall Institute</td>
<td>VTT</td>
</tr>
<tr>
<td>Passives Building blocks</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Active Building blocks</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Thermo optical</td>
</tr>
<tr>
<td>Minimum number of Die</td>
<td>25</td>
<td>25</td>
<td>15*</td>
<td>1 large or 8 small</td>
</tr>
<tr>
<td>Low volume production</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Notes:
*) Mini block available for academic
**) Cost for passive only
***) Cost for Heater technology
****) Cost for active
*****) Compatible design rules with 300 mm industrial foundry
Global LETI MPW offer on 310nm Si / 800 nm BOX on 200mm platform

Passives components
- Heaters
- Lateral Ge PIN diode

Coupler 1D
- IL < -2.5 dB loss
- Monomode Rib waveguide:
 - propagation losses: < 2.5dB/cm
- Multimode Rib Waveguide:
 - propagation losses: < 0.3dB/cm

Coupler 2D
- IL < -4.5 dB loss

- Thermal efficiency: 0.5 > TE > 0.2 nm/mW
- Sheet resistance: 5.5 ohm / Sq
- Responsivity: > 0.7A/W
- Dark current: < 10nA @ -1 V
- Bandwidth: 30 GHz
- Vpi.Lpi < 2.5 V.cm
- Prop Loss < 2 dB/mm
- Data Rate up to 25Gbps

- Si310-PH

- Sign in Q1 or Q4 2016 through Europractice IC
- Si310-PHMP2M sign in 2016

- Very high performance building blocks for λ=1.31 μm and λ=1.55 μm
- Compatible Photonics and process 3D from CEA-LETI for Electronics integration
- PDKs available via Cadence, Phoenix software, and Mentor Graphics
- Technology compatible design rules with 300 mm industrial foundry

NEW SOI PLATFORM!
NEW SOI PLATFORM!

- SOI substrate High Resistivity: BOX 800nm / Si 310 nm
- Passive structures (3 mask layers DUV 193nm)
 - min CD 120nm
 - 300nm /150nm
 - 150nm /0
 - Optional Slab 65nm
- Germanium PD's fabrication
 - n and p implant level
- Heater layer (Optional)
- MZ and RR Modulators
 - (2 n level and 2 p level implants)
- Silicidation
- Tungsten Plugs for interconnection
- 2 level of AlCu Metallization for routing

Full platform
MPW offer
available from 2016

CEA –LETI 3D
MPW offer via CMP Broker
available

Photonics and electronics integration
available from 2016
Silicon Photonics Platform ISIPP25G+

- 200mm Photonics SOI wafers with 220nm top Si and 2um BOX
- Processes based on 130nm CMOS toolset plus
 - 193nm lithography for all silicon waveguide patterning steps
 - 3n/3p level implants for plasma dispersion modulators
 - 2 level metallization
 - Edge Couplers
 - Selective Ge epi for waveguide-based photo-detectors and F-K modulators
- 24 mask layer process
ISIPP25G+ Performance: Passives

TE Grating Couplers
- Fiber-to-waveguide IL \(\sim 2.5\)dB (SMF, no IMF)
- Peak WL control within-wafer \(1-\sigma < 4.0\)nm
- 1dB Bandwidth \(\sim 29\)nm (no IMF)

Note: data is based on multiple wafers / multiple lots

TE/TM Edge Couplers
- Fiber-to-waveguide IL <2dB (High-NA, IMF)
- Polarization dependent loss <0.5dB
- 1dB Bandwidth >100nm

Note: O-band designs in development

Waveguide Loss
SWG-WG
- SWG-WG < 2.0dB/cm

RWG-FC
- RWG-FC < 1.0dB/cm

Note: data is based on multiple wafers / multiple lots

Waveguide-based filters
- Within-device channel spacing control (2.4nm) \(3-\sigma < 0.6\)nm
- Within-wafer resonator free spectral range (14nm) \(3-\sigma < 0.25\)nm
- Within-wafer channel wavelength control \(3-\sigma < 8.0\)nm

Note: data is based on multiple wafers / multiple lots
ISIPP25G+ Performance: Actives

Ring Modulators
- 56Gb/s achieved with $2.5V_{pp}$ (ER=4dB)
- Transmitter Penalty @ $1V_{pp}$ <9dB
- Modulation efficiency 39pm/V

Note: this result has been achieved on 300mm wafer

MZI Modulators
- 30Gb/s achieved with $2.0V_{pp}$ (ER = 3.5dB)
- $V_{\pi} - L_{\pi} = 1.0V\cdot cm$, Insertion loss = 6dB
- On-chip electrode term., single-ended drive

Note: this result has been achieved on 300mm wafer. Improved performance expected with push-pull configuration

Ge EA Modulators
- 56Gb/s achieved with $2.0V_{pp}$ (ER=3.3dB)
- Transmitter Penalty @ $2.0V_{pp}$ <9dB
- Operation at 1610nm

Note: optimization for C-Band modulation on-going

Ge-on-Si Detectors

Typical Performance at -1V, Room T., 1550nm
- Device Type I: 0.85A/W, <30nA, 51GHz
- Device Type II: 0.97A/W, <30nA, 23GHz

Note: the data is based on multiple wafers / multiple lots
Introducing TriPleX: Ultra Low Loss

LPCVD
Si$_3$N$_4$ + SiO$_2$ platform

"An Ultra-Low-loss (<0.1 dB/m) Planar Silica Waveguide Platform," Bauters, Jared; Nechat, Martijn J R; John, Demis D; Barton, Jonathon S; Bruinink, Christiaan M; Leinse, Arne; Heideman, René G; Blumenthal, Daniel J; Bowers, John E, IEEE Photonics Newsletter, December 2011, p. 4-6, December 9, (2011)
TriPleX Offers MPW & Custom Runs

- Photonic ASIC prototypes in TriPleX MPW fab (typically a run every 4 months)

- Low-loss dielectric waveguides:
 - silicon nitride
 - silicon oxide

- High Quality Passives (AWG, MZ, ring, ..)
- Low-loss waveguides ≤ 0.5 dB/cm
- Bend radii 125 µm allow real VLSI
- Spotsize converters for low coupling loss
- Thermo Optic Phase modulators

Visible light to IR transparency (405 to 2350 nm)
Packaging services for prototypes available via XiO Photonics

www.lionixbv.nl/triplexmpw
TriPleX Combines Well With InP

- TEC carrier substrate
- Low-loss waveguides & spot-size converters
 Visible & NIR ranges
- Fiber feed through
- InP Chip
 Active devices
 Lasers, SOAs, fast modulators + PDs
- Fiber array
- Electrical connections
- Wire bonds

● Combine the best of both worlds
Comparison of Costs for MPW PICs

<table>
<thead>
<tr>
<th>Broker</th>
<th>Process</th>
<th>MPW die size mm²</th>
<th>Price EUR</th>
<th>MPW cost/mm²</th>
<th>Chips per MPW run</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>JePPIX</td>
<td>SMART T×R× 10</td>
<td>2 x 4.6</td>
<td>4500</td>
<td>500</td>
<td>8</td>
<td>InP</td>
</tr>
<tr>
<td>JePPIX</td>
<td>HHI Rx 40</td>
<td>3 x 6</td>
<td>5500</td>
<td>300</td>
<td>8</td>
<td>InP</td>
</tr>
<tr>
<td>JePPIX</td>
<td>Oclaro T×R× 10</td>
<td>2 x 6</td>
<td>12000</td>
<td>1000</td>
<td>8</td>
<td>InP</td>
</tr>
<tr>
<td>TripleX</td>
<td>TriPleX</td>
<td>16 x 16</td>
<td>16000, 8500⁺</td>
<td>63</td>
<td>4</td>
<td>Si₃N₄/SiO₂</td>
</tr>
<tr>
<td>Europractice</td>
<td>Imec PSV</td>
<td>3 x 6</td>
<td>5000</td>
<td>278</td>
<td>>25</td>
<td>Si</td>
</tr>
<tr>
<td>Europractice</td>
<td>Imec ISIPP25G+</td>
<td>2.5 x 2.5</td>
<td>10000</td>
<td>1600</td>
<td>>10</td>
<td>Si</td>
</tr>
<tr>
<td>Europractice</td>
<td>CEA-LETI Si310-PH</td>
<td>1.7 x 3.7*</td>
<td>6610⁺</td>
<td>1050</td>
<td>15</td>
<td>Si</td>
</tr>
<tr>
<td>Europractice</td>
<td>IHP PIC</td>
<td>custom</td>
<td>Size scaled</td>
<td>2000</td>
<td>20</td>
<td>Si</td>
</tr>
<tr>
<td>VTT</td>
<td>VTT 3 μm SOI</td>
<td>5 x 10</td>
<td>8000</td>
<td>160</td>
<td>8</td>
<td>Si</td>
</tr>
</tbody>
</table>

- InP MPWs: 2”- 3” wafers, 50 – 200 chips per wafer
- Silicon Photonics MPWs: 6”-8” wafers, 300 – 5000 chips per wafer
- Perception is that Silicon Photonics is more cost effective at high volume (e.g. datacom)
 - Table shows that InP is cost effective relative to Silicon Photonics
 - Question is what the high volume is and at which cost metrics changes
Design Software and PDKs
PIC Design Software

- Fortunately, these days really good S/W is available
 - It goes w/o saying that EDA tools were created for Electronic ICs
 - Likewise Photonic Design S/W has been created for PICs

- But there are in between situations:
 - What if your chip has optical as well as electrical components?
 - What if you plan to do the photonic simulations in PDA, but then use EDA for the mask layout?
 - Also, there are ongoing efforts between EDA and PDA providers to make their S/W interoperable and support the industry to scale from R&D to (volume) manufacturing

- Even though some functions can be done using both PDA as well as EDA, some care is needed...
EDA and PDA: Photonics ≠ CMOS

- Integrated Photonics has “RF-like” behavior, requiring:
 - Dedicated photonics simulation routines
 - Accurate and flexible definition of all angle shapes
 - Control of phase relations
 - Libraries with parametric photonics building blocks
 - Special features for verification (DRC, LVS)
Tools support design at circuit level

- Pick, place and connect validated components
- Photonic and electrical connections automatically detected
- Schematic connectivity drives layout directly
Tools support circuit simulations

- Calibrated model libraries improve design accuracy
 - Design using compact model libraries of fundamental and complex devices, calibrated to foundry processes
 - Frequency & time domain simulation
Tools support mask layout generation

- Design S/W can translate design intent into layout
- Design S/W can correct for process influences

Use technology information to obtain design intent after fabrication

Simulating lithography influence on design intent
Tools support design verification

- Functional verification, Design Rule Checking (DRC) and Layout vs Schematic (LVS)
- Built-in photonics relevant design checks (like minimum bend radius)
- Design rules targeting CMOS processes will flag thousands of false errors in photonic structures, Photonic specific DRC rules can minimize false errors
- Integrated design flows enable LVS
Why are PDKs so important?

- When working with a foundry (or your own fab), you do not want to reinvent the wheel nor make unnecessary mistakes
 - So all relevant knowledge should be available when designing a PIC
 - And the PDK should be automated (rather than in the form of docs)
 - Without a PDK, there are simply too many unneeded iterations

- What does a PDK include?
 - Design rules and mask layer information
 - Library of validated components
 - Layout information
 - Simulation models and settings
 - Die and package templates
PDKs enable efficient development

Faster design cycles and first-time-right designs

- Higher accuracy by using validated compact model libraries for circuit design
- Faster layout implementation by using predefined parametric components
- Higher yield in manufacturing by applying design rules

Component & Model Library Design
- Component Simulation
 - Optoelectronic solvers
- Measured Results
 - Defined Compact Model
Component Designer

Photonic PDK
- Design Rules
- Component parameters
- Process data
- Layout
 - Compact models(CML)

Photonic Circuit Design & Fabrication
- Circuit Design, Layout, Verification
- Fabrication and Test
System Designer
A wide variety of PDKs is available

- Foundries:
 - Silicon: IMEC, CEA-Leti, VTT, IHP and IME
 - InP: FhG/HHI, Oclaro and SMART Photonics
 - TriPleX (SiN): LioniX
- Packaging: Technobis ipps, Chiral Photonics, Gooch and Housego, Linkra, XiO Photonics and Tyndall
- PDKs are available to a varying degree of maturity
- PDKs are typically made available through MPW brokers
PDKs support integration of design flows

Schematic Capture
INTERCONNECT
Lumerical Solutions

Photonic Circuit Simulation
INTERCONNECT
Lumerical Solutions

PDKs
Design Rules, Compact Models
Component Parameters
Process Data

Layout and Mask Generation
OptoDesigner
PhoeniX Software

Verification
LVS, DRC
PhoeniX Software

Compact Model Parameter Extraction
Optical Parameters Define Layout Structures

Photonic Component Design
Optoelectronic solvers, Experimental data

Lumerical Solutions
PhoeniX Software
Scaling Silicon Photonics

- As in the electronic IC ecosystem, faster and more complex photonic ICs will require multi-user collaboration
- Innovators will need to build teams with dedicated expertise in multiple areas of PIC design – from system concept to physical layout
- Mentor Graphics provides the tools to do this:
 - Pyxis enables multi-user collaboration in common environment
 - Calibre provides sign-off assurance through physical verification
EDA Driven Design Flow

- **Electrical Simulation**: Eldo, Questa ADMS
- **Design Capture**: Pyxis Schematic
- **Photonic Circuit Simulation**: Lumerical INTERCONNECT
- **Design Verification**: Calibre nmLVS
- **RealTime DRC, Litho Correction**: Calibre nmDRC, RealTime, LFD
- **Photonic Building Block Generation**: PhoeniX Software OptoDesigner
- **Results Viewing**: EZwave
- **Layout Implementation**: Pyxis Layout
- **Leverage existing mainstream interface to electrical and mixed-signal simulators**
- **Leverage OptoDesigner dedicated photonics synthesis capabilities**

PDK Driven Methodology: Design rules, compact models, photonics building blocks and technology information for major foundries
Why Pyxis?

- Provides a collaborative multi-user environment
- Simulate schematics using Lumerical INTERCONNECT, Eldo with Verilog-A, or Questa ADMS
- Flexible infrastructure allows quick integration to any tool accessible within Linux
- Complete PDK driven design flow leveraging Calibre, Lumerical and PhoeniX Software
Why Calibre?

- Market and industry standard
- Fast and accurate DRC:
 - EqDRC handles complex curves
 - RealTime results in Pyxis
- Photonic LVS:
 - Shorts & opens detection
 - Device validation
 - Waveguide interconnect parameter extraction
- Lithographic Modeling:
 - Reduces manufacture iterations
 - Drive accurate photonic simulation
Why Lumerical?

Three Distinct Design Activities for PIC Development

1. **Component-level design and optimization**
 - Design and optimize a component for desired performance

2. **Compact model library generation for PDKs**
 - Build compact model for component
 - Calibrate against experimental results
 - Inform with simulation results

3. **Photonic Integrated Circuit design and optimization**
 - Build complex circuits based on known components with validated compact models
Why Lumerical?

PDKs
Design Rules, Compact Models, Component Parameters, Process Data

INTERCONNECT
Photonic Integrated Circuit Simulator
Compact Model Library for Circuit Design & Optimization

Photonic Component Design
Optoelectronic Solvers, Experimental Data

• Parameter Extraction for Compact Models
• Component Design & Optimization

FDTD Solutions
Nanophotonic Solver (2D/3D)

MODE Solutions
Waveguide Design Environment

Compact Model Parameter Extraction

Device
Charge Transport Solver (2D/3D)
Why PhoeniX Software?

- Design for Manufacturability
 - Automatic translation of design intent into manufacturable layout
 - Simulations and layout combined in one environment
 - Include process variations into the design flow

‘Ease of design’ through Photonic Synthesis

Photonic Building Blocks
- Match photonic specifications with foundry capabilities
Why OptoDesigner?

- Native all-angle and all-shape design
- Complete parametrized library for photonics
- Includes photonics verification and design rule checking
- Interfaces with world-class 3rd party circuit simulators
- Easy to use GUI including powerful scripting
- PDKs available for 8 photonics foundry services

More than 300 designs created and fabricated in MPW’s in the last 3 years!
Coupling, Packaging & Testing

Critical to discuss the device I/O and packaging at the earliest stages of design - assures efficient testing and design iterations

- Edge vs. surface optical coupling
- Active alignment design / equipment needs
- Testing / design verification needs
- Probing, optical and electrical (DC/RF), at wafer and die level
- Application-specific packaging needs, e.g.
 - Rudimentary, development package for interim testing & refinement of design
 - Thermoelectric cooler (TEC) and temperature sensing
 - Cryogenic testing
 - Hermetic package
 - Butterfly package or other specific package requirements
 - Pluggable vs. pigtailed package

<table>
<thead>
<tr>
<th>Coupling Technique</th>
<th>Broadband</th>
<th>Polarization Maintaining</th>
<th>Alignment accuracy (μm)</th>
<th>Coupling Loss (dB)</th>
<th>Edge preparation</th>
<th>Min channel spacing (μm)</th>
<th>Channel count per port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge</td>
<td>Yes</td>
<td>Yes</td>
<td>0.2</td>
<td>2</td>
<td>Yes</td>
<td>12</td>
<td>10s</td>
</tr>
<tr>
<td>Surface</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>3-4</td>
<td>No</td>
<td>37</td>
<td>100s</td>
</tr>
</tbody>
</table>
Packaging Resources

- Complex heterogeneous integration is required for PICs, which is not simple

- Longer term projects pursue passive alignment solutions, e.g.
 - FP7 initiative PHASTFlex (http://www.phastflex.eu)
 - IBM’s Compliant Interface

- Current state-of-the-art requires active alignment but offers scalable processes with available design help:
 - Some MPW foundries offer prototype packaging
 - JePPIX => Linkra, G&H and Technobis
 - Europractice => Tyndall (foundry has specific design rules for Tyndall packaging)
 - LioniX => XiO Photonics
 - Chiral Photonics (New Jersey, USA) offers dedicated optoelectronic packaging and testing services in addition to consulting and enabling components
Design consultation

- Complimentary coupling and packaging guidelines: DesignGuide@chiralphotronics.com
- Discuss critical design elements, e.g.:
 - Channel and port placement
 - Optical passthrough (e.g. extra channel, port) vs. on-chip detection for alignment
 - Fiducial markings
 - Die edge preparation
 - Initial design verification and testing requirements, e.g.:
 - Wafer and die probing

Development packaging & fundamental testing

- Designed to facilitate electrical/optical probing
- Standard packages supported by design software, e.g.:

<table>
<thead>
<tr>
<th>Description</th>
<th>1st die</th>
<th>Subsequent die (small quantity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Only – 2 single-channel ports</td>
<td>4,000</td>
<td>3,200</td>
</tr>
<tr>
<td>Optoelectronic – 2 single-channel optical ports, 25 Gb/s (10 RF / 10 DC)</td>
<td>8,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Optoelectronic – 2 single-channel optical ports, 50 Gb/s (10 RF / 10 DC)</td>
<td>9,000</td>
<td>6,000</td>
</tr>
</tbody>
</table>

- Characterization of packaged devices:
 - Broadband PM Spectra: TE vs. TM coupling, 1200-1700 nm
 - Waveguide edge mode field diameter measurements
Chiral Photonics

- Fiber Optic Couplers, ultrahigh density
 - Surface and edge coupling PROFA1D and 2D

- Probing and packaging equipment, such as:
 - Surface optical probing equipment

- Application-specific and production packaging needs
 - Meet specific, full optoelectronic application needs, such as:
 - Butterfly package or other specific package requirements
 - Cryogenic testing
 - Hermetic package
 - Pluggable package

Same equipment used to couple 37 channels simultaneously, with 3 dB coupling loss, to imec PIC: V. I. Kopp, et.al. JLT, 33, 3, 653 (2015).
Turn-Key PIC Design Houses
Design Houses Support PIC Creation

- Turn-key PIC design houses can be ideal:
 - if you need specific design support
 - or if you do not have the design capabilities yourself

- In addition, they can provide a complete service
 - This includes testing, packaging, and system level evaluation
Design House Also Reduces Risks

- Critical to minimize risk and ensure return on investment

TIME

- ~1 year

MONEY

- ~30k€
- ~100k€
Design House Offer Several Benefits

- Get up to speed in no time: faster development
- Profit from experience: improve and validate designs
- Ensure optimal interfacing along the integration chain
- Total flexibility: from consultancy to turn-key solutions
VLC Photonics’ Design Services

VLC Snapshot

- Optical chip design and characterization in all photonic technologies
- Offices in Valencia, Spain, with representation in the Netherlands & USA
- 6 members of extensive academic and industrial experience, 12+ years in the field of integrated optics and photonics
- Telecom/datacom, quantum, sensing & microwave photonic expertise

VLC’s way of working

- Very fast reaction to work on all main platforms
- Confidentiality guarantees and complete IP transfer
- Optimized design libraries: AWGs, Echelles, MZIs, MMIs, etc.
- Extensive network of foundry and packaging partners
Why Bright Photonics?

... just ask a design house ...

- Do your PICs make it into products?
- Are your design modules available to us?
- Did you do 20+ foundries, 25+ MPWs, 300+ designs?

Typical customers:
- OEM, SME (products)
- Enterprises (R&D)
- Research groups

Partners and consortiums
- Partner network for PIC fab & pack.
- PHOXTROT (FP7)
- L3MATRIX (H2020)

Flexible cooperation formats with you
- 100% independent
- Quality saves most time
- We'll tell you if it isn't possible

What we offer

Products
- Co-development
- Prototyping
- Design for volume

Design
- Mask design & Training
- PDK implementation
- Design modules

Technologies
- SOI, SiN, Si
- InP
- Polymer, Hybrid

Lightwave PIC Webinar
Why Training Is Critical For PICs

- The way to go for PIC development is increasingly by using outside service providers.
- You may need several providers and these all need to be working closely together (in the form of an ecosystem).
- This can all be hard to figure out, but the best way to find out is to actively engage in-depth during training.
- This is where you become familiar with all the players and how they jointly produce seamless support.
- In addition, the design and layout software is ideally tried in a guided training environment.
Unique Training Event Held in North-America

- **Date:** Oct 19-23, 2015
- **Location:**
 Dept of EE, Columbia University
 New York City
- **Material independent:**
 covers Silicon, InP, & TriPleX
- **Covers full range of system level, component tutorial, design & layout S/W, close to all MPW foundries, packaging, turn-key PIC design houses, business topics**

Training Supported by Broad Group

- Foundries
 - InP
 - Silicon Photonics
 - TriPleX

- Design software

- Packaging

- Design houses

- Organization: www.7pennies.com
It's Time for Questions

You can submit a question using the question tool on your screen.
Thank you for attending.

More questions? Contact:

IMEC: Amit Khanna at amit.khanna@imec.be
CEA-LETI: Maryse Fournier at maryse.fournier@cea.fr
LioniX: Arne Leinse at a.leinse@lionixbv.nl
Mentor: Chris Cone at chris_cone@mentor.com
Lumerical: Bill de Vries at bdevries@lumerical.com
PhoeniX Software: Twan Korthorst at twan.korthorst@phoenixbv.com
Chiral Photonics: Dan Neugroschl at dann@chiralphotonics.com
VLC Photonics: Inigo Artundo at inigo.artundo@vlcphotonics.com
Bright Photonics: Ronald Broeke at ronald.broeke@brightphotonics.eu
7 Pennies: Erik Pennings at erik@7pennies.com